# A Bigger Mathematical Picture for Computer Graphics

Eric Lengyel, PhD Terathon Software

# Common math in computer graphics

- Dot / cross products, scalar triple product
- Planes as 4D vectors
- Homogeneous coordinates
- Plücker coordinates for 3D lines
- Transforming normal vectors and planes with the inverse transpose of a matrix

# Common math in computer graphics

- These concepts often used without a complete understanding of the big picture
- Can be used in a way that is not natural
- Different pieces used separately without knowledge of the connection among them

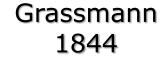
# There is a bigger picture

- All of these arise as part of a single mathematical system discovered by Hermann Grassmann.
- Understanding the big picture provides deep insights into seemingly unusual properties
- Knowledge of the relationships among these concepts makes better 3D programmers

WSCG 2012

# History

Hamilton 1843



Clifford 1878





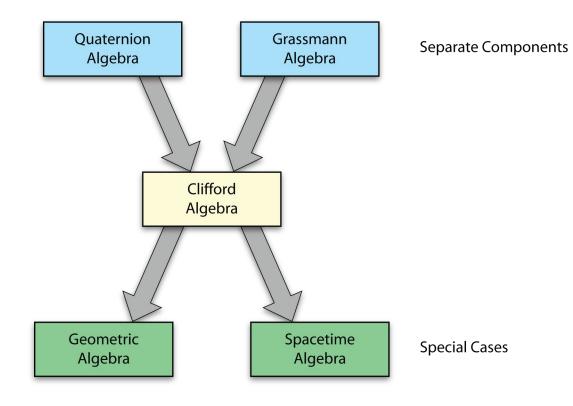


Quaternions

Exterior algebra

Clifford algebra

# History



# Outline

- Grassmann algebra in 3-4 dimensions
  - Wedge product, bivectors, trivectors...
  - Transformations
  - Homogeneous model
  - Geometric computation
  - Programming considerations

# The wedge product

- Also known as:
  - The progressive product
  - The exterior product
- Gets name from symbol:  $\mathbf{a} \wedge \mathbf{b}$
- Read "a wedge b"

# The wedge product

Operates on scalars, vectors, and more
Ordinary multiplication for scalars s and t:

$$s \wedge t = t \wedge s = st$$

$$s \wedge \mathbf{v} = \mathbf{v} \wedge s = s\mathbf{v}$$

• The square of a vector **v** is always zero:

$$\mathbf{v} \wedge \mathbf{v} = \mathbf{0}$$

# Wedge product anticommutativity

• Zero square implies vectors anticommute

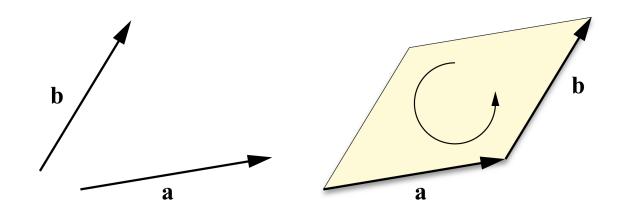
 $(\mathbf{a} + \mathbf{b}) \wedge (\mathbf{a} + \mathbf{b}) = 0$  $\mathbf{a} \wedge \mathbf{a} + \mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{a} + \mathbf{b} \wedge \mathbf{b} = 0$  $\mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{a} = 0$  $\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$ 

# Bivectors

- Wedge product between two vectors produces a "bivector"
  - A new mathematical entity
  - Distinct from a scalar or vector
  - Represents an oriented 2D area
  - A vector represents an oriented 1D direction
  - Scalars are zero-dimensional values

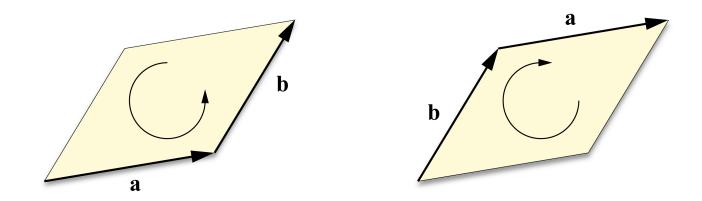
#### Bivectors

Bivector is two directions and magnitude



# Bivectors

Order of multiplication matters



```
\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}
```

Start with 3 orthonormal basis vectors:

$$e_1, e_2, e_3$$

• Then a 3D vector **a** can be expressed as

$$a_1 e_1 + a_2 e_2 + a_3 e_3$$

 $\mathbf{a} \wedge \mathbf{b} = (a_1\mathbf{e}_1 + a_2\mathbf{e}_2 + a_3\mathbf{e}_3) \wedge (b_1\mathbf{e}_1 + b_2\mathbf{e}_2 + b_3\mathbf{e}_3)$ 

$$\mathbf{a} \wedge \mathbf{b} = a_1 b_2 (\mathbf{e}_1 \wedge \mathbf{e}_2) + a_1 b_3 (\mathbf{e}_1 \wedge \mathbf{e}_3) + a_2 b_1 (\mathbf{e}_2 \wedge \mathbf{e}_1) + a_2 b_3 (\mathbf{e}_2 \wedge \mathbf{e}_3) + a_3 b_1 (\mathbf{e}_3 \wedge \mathbf{e}_1) + a_3 b_2 (\mathbf{e}_3 \wedge \mathbf{e}_2)$$

$$\mathbf{a} \wedge \mathbf{b} = (a_2b_3 - a_3b_2)(\mathbf{e}_2 \wedge \mathbf{e}_3) + (a_3b_1 - a_1b_3)(\mathbf{e}_3 \wedge \mathbf{e}_1) + (a_1b_2 - a_2b_1)(\mathbf{e}_1 \wedge \mathbf{e}_2)$$

 The result of the wedge product has three components on the basis

$$\mathbf{e}_2 \wedge \mathbf{e}_3, \quad \mathbf{e}_3 \wedge \mathbf{e}_1, \quad \mathbf{e}_1 \wedge \mathbf{e}_2$$

 Written in order of which basis vector is missing from the basis bivector

• Do the components look familiar?

$$\mathbf{a} \wedge \mathbf{b} = (a_2b_3 - a_3b_2)(\mathbf{e}_2 \wedge \mathbf{e}_3) + (a_3b_1 - a_1b_3)(\mathbf{e}_3 \wedge \mathbf{e}_1) + (a_1b_2 - a_2b_1)(\mathbf{e}_1 \wedge \mathbf{e}_2)$$

 These are identical to the components produced by the cross product **a** × **b**

## Shorthand notation

 $\mathbf{e}_{12} = \mathbf{e}_1 \wedge \mathbf{e}_2$  $\mathbf{e}_{23} = \mathbf{e}_2 \wedge \mathbf{e}_3$  $\mathbf{e}_{31} = \mathbf{e}_3 \wedge \mathbf{e}_1$  $\mathbf{e}_{123} = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3$ 

$$\mathbf{a} \wedge \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{e}_{23} + (a_3b_1 - a_1b_3)\mathbf{e}_{31} + (a_1b_2 - a_2b_1)\mathbf{e}_{12}$$

## Comparison with cross product

• The cross product is not associative:

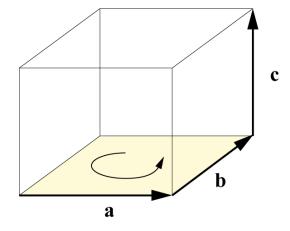
$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$$

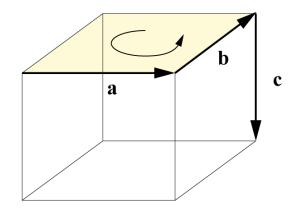
- The cross product is only defined in 3D
- The wedge product is associative, and it's defined in all dimensions

# Trivectors

- Wedge product among three vectors produces a "trivector"
  - Another new mathematical entity
  - Distinct from scalars, vectors, and bivectors
  - Represents a 3D oriented volume

#### Trivectors





 $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ 

• A 3D trivector has one component:

 $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c} =$ 

- $(a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 a_1b_3c_2 a_2b_1c_3 a_3b_2c_1)$  $(\mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3)$
- The magnitude is  $det([\mathbf{a} \ \mathbf{b} \ \mathbf{c}])$

- 3D trivector also called pseudoscalar or antiscalar
- Only one component, so looks like a scalar
- But flips sign under reflection

# Scalar Triple Product

The product

 $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ 

produces the same magnitude as

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

but also extends to higher dimensions

# Grading

- The grade of an entity is the number of vectors wedged together to make it
- Scalars have grade 0
- Vectors have grade 1
- Bivectors have grade 2
- Trivectors have grade 3
- Etc.

# 3D multivector algebra

- 1 scalar element
- 3 vector elements
- 3 bivector elements
- 1 trivector element
- No higher-grade elements
- Total of 8 *multivector* basis elements

# Multivectors in general dimension

• In *n* dimensions, the number of basis *k*-vector elements is

$$\binom{n}{k}$$

- This produces a nice symmetry
- Total number of basis elements always 2<sup>n</sup>

# Multivectors in general dimension

| Dimension | Graded elements |
|-----------|-----------------|
| 1         | 1 1             |
| 2         | 1 2 1           |
| 3         | 1 3 3 1         |
| 4         | 1 4 6 4 1       |
| 5         | 1 5 10 10 5 1   |

## Four dimensions

- Four basis vectors  $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$
- Number of basis bivectors is

$$\binom{4}{2} = 6$$

• There are 4 basis trivectors

# Vector / bivector confusion

- In 3D, vectors have three components
- In 3D, bivectors have three components
- Thus, vectors and bivectors look like the same thing!
- This is a big reason why knowledge of the difference is not widespread

# Cross product peculiarities

- Physicists noticed a long time ago that the cross product produces a *different* kind of vector
- They call it an "axial vector", "pseudovector", "covector", or "covariant vector"
- It transforms differently than ordinary "polar vectors" or "contravariant vectors"

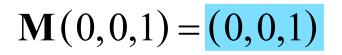
• Simplest example is a reflection:

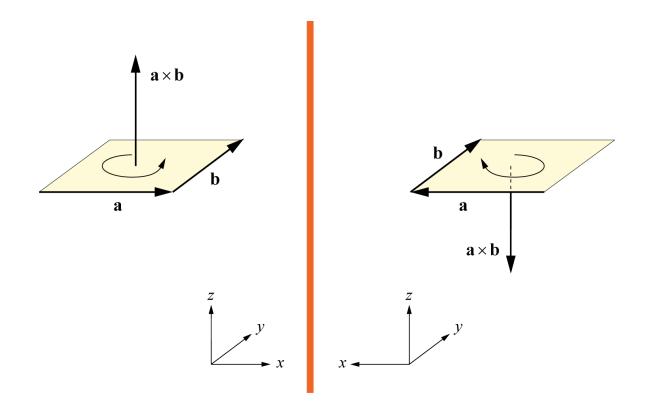
$$\mathbf{M} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

# $(1,0,0) \times (0,1,0) = (0,0,1)$

# $\mathbf{M}(1,0,0) \times \mathbf{M}(0,1,0) = (-1,0,0) \times (0,1,0) = (0,0,-1)$

Not the same as





- In general, for 3 x 3 matrix **M**,
- $\mathbf{M}(a_{1}\mathbf{e}_{1} + a_{2}\mathbf{e}_{2} + a_{3}\mathbf{e}_{3}) = a_{1}\mathbf{M}_{1} + a_{2}\mathbf{M}_{2} + a_{3}\mathbf{M}_{3}$

#### $Ma \times Mb =$

 $(a_1\mathbf{M}_1 + a_2\mathbf{M}_2 + a_3\mathbf{M}_3) \times (b_1\mathbf{M}_1 + b_2\mathbf{M}_2 + b_3\mathbf{M}_3)$ 

# $\mathbf{Ma} \times \mathbf{Mb} =$ $(a_2b_3 - a_3b_2)(\mathbf{M}_2 \times \mathbf{M}_3)$ $+(a_3b_1 - a_1b_3)(\mathbf{M}_3 \times \mathbf{M}_1)$ $+(a_1b_2 - a_2b_1)(\mathbf{M}_1 \times \mathbf{M}_2)$

## Products of matrix columns

• What are these cross products?

$$(\mathbf{M}_{2} \times \mathbf{M}_{3}) \cdot \mathbf{M}_{1} = \det \mathbf{M}$$
$$(\mathbf{M}_{3} \times \mathbf{M}_{1}) \cdot \mathbf{M}_{2} = \det \mathbf{M}$$
$$(\mathbf{M}_{1} \times \mathbf{M}_{2}) \cdot \mathbf{M}_{3} = \det \mathbf{M}$$

They are complements of the columns of M

## Matrix inversion

• Cross products as rows of matrix:

$$\begin{bmatrix} \mathbf{M}_2 \times \mathbf{M}_3 \\ \mathbf{M}_3 \times \mathbf{M}_1 \\ \mathbf{M}_1 \times \mathbf{M}_2 \end{bmatrix} \mathbf{M} = \begin{bmatrix} \det \mathbf{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \det \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \det \mathbf{M} \end{bmatrix}$$

• This forms inverse of **M** times det **M** 

Transforming the cross product requires the inverse matrix:

$$\begin{bmatrix} \mathbf{M}_2 \times \mathbf{M}_3 \\ \mathbf{M}_3 \times \mathbf{M}_1 \\ \mathbf{M}_1 \times \mathbf{M}_2 \end{bmatrix} = (\det \mathbf{M}) \mathbf{M}^{-1}$$

 Inverse transpose correctly transforms result of cross product:

$$(\det \mathbf{M})\mathbf{M}^{-T} \begin{bmatrix} a_{2}b_{3} - a_{3}b_{2} \\ a_{3}b_{1} - a_{1}b_{3} \\ a_{1}b_{2} - a_{2}b_{1} \end{bmatrix} = (a_{2}b_{3} - a_{3}b_{2})(\mathbf{M}_{2} \times \mathbf{M}_{3}) + (a_{3}b_{1} - a_{1}b_{3})(\mathbf{M}_{3} \times \mathbf{M}_{1}) + (a_{1}b_{2} - a_{2}b_{1})(\mathbf{M}_{1} \times \mathbf{M}_{2})$$

Transformation formula:

$$\mathbf{M}\mathbf{a} \times \mathbf{M}\mathbf{b} = (\det \mathbf{M})\mathbf{M}^{-T}(\mathbf{a} \times \mathbf{b})$$

 Result of cross product must be transformed by inverse transpose times determinant

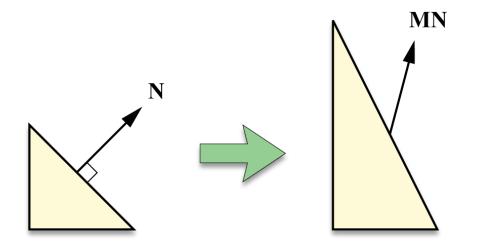
- If M is orthogonal, then inverse transpose is the same as M
- If the determinant is positive, then it can be left out if you don't care about length
- Determinant times inverse transpose is called adjugate transpose

- What's really going on here?
- When we take a cross product, we are really creating a bivector
- Bivectors are not vectors, and they don't behave like vectors

#### Normal "vectors"

- A triangle normal is created by taking the cross product between two tangent vectors
- A normal is really a bivector, and it transforms as such

## Normal "vector" transformation



# Classical derivation

- Standard proof for inverse transpose for transforming normals:
  - Preserve zero dot product with tangent
  - Misses extra factor of det M

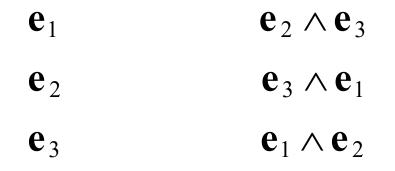
 $\mathbf{N} \cdot \mathbf{T} = \mathbf{0}$  $\mathbf{UN} \cdot \mathbf{MT} = \mathbf{0}$  $\mathbf{N}^T \mathbf{U}^T \mathbf{M} \mathbf{T} = \mathbf{0}$  $\mathbf{U}^T = \mathbf{M}^{-1}$  $\mathbf{U} = \mathbf{M}^{-T}$ 

## Higher dimensions

- In *n* dimensions, the (*n* 1)-vectors have *n* components, just as 1-vectors do
- Each 1-vector basis element uses exactly one of the spatial directions e<sub>1</sub>...e<sub>n</sub>
- Each (n 1)-vector basis element uses all except one of the spatial directions e<sub>1</sub>...e<sub>n</sub>

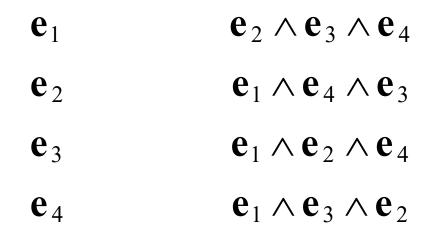
# Symmetry in three dimensions

• Vector basis and bivector (n - 1) basis



# Symmetry in four dimensions

• Vector basis and trivector (n - 1) basis



## Dual basis

 Use special notation for wedge product of all but one basis vector:

$$\overline{\mathbf{e}}_1 = \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$$
$$\overline{\mathbf{e}}_2 = \mathbf{e}_1 \wedge \mathbf{e}_4 \wedge \mathbf{e}_3$$
$$\overline{\mathbf{e}}_3 = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_4$$
$$\overline{\mathbf{e}}_4 = \mathbf{e}_1 \wedge \mathbf{e}_3 \wedge \mathbf{e}_2$$

## Dual basis

Order of wedged basis vectors chosen so that

$$\mathbf{e}_i \overline{\mathbf{e}}_i = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$$

## Dual basis

- Instead of saying (n 1)-vector, we call these "antivectors"
- In n dimensions, antivector always means a quantity expressed on the basis elements having grade n – 1

# Vector / antivector product

 Wedge product between vector and antivector is the origin of the dot product:

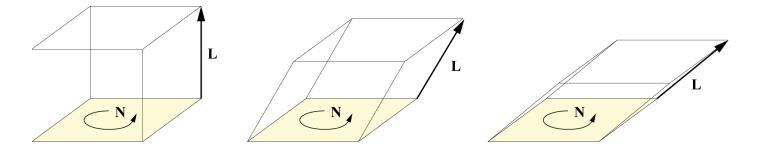
$$(a_1\mathbf{e}_1 + a_2\mathbf{e}_2 + a_3\mathbf{e}_3) \wedge (b_1\overline{\mathbf{e}}_1 + b_2\overline{\mathbf{e}}_2 + b_3\overline{\mathbf{e}}_3)$$
$$= (a_1b_1 + a_2b_2 + a_3b_3)(\mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3)$$

 They complement each other, and "fill in" the volume element

## Vector / antivector product

- Many of the dot products you take are actually vector / antivector wedge products
- For instance, **N L** in diffuse lighting
- N is an antivector
- Calculating volume of extruded bivector

# Diffuse lighting

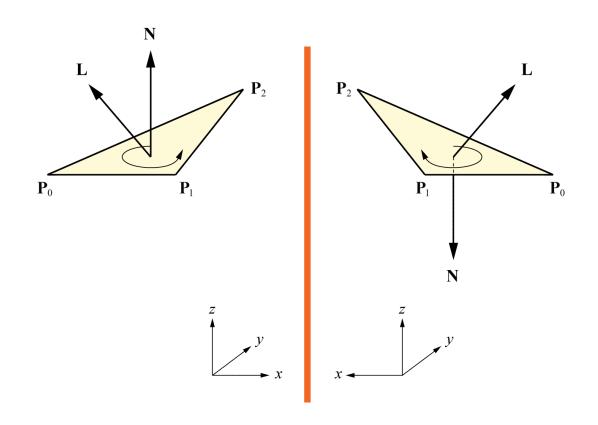


# Diffuse lighting

- N L is really the antiscalar produced by  $N \wedge L$
- N transforms with  $(\det M)M^{-T}$
- N L transforms as

 $(\det \mathbf{M})\mathbf{M}^{-T}\mathbf{N} \cdot \mathbf{ML}$  $= \mathbf{N}^{T} (\det \mathbf{M})\mathbf{M}^{-1}\mathbf{ML}$  $= (\det \mathbf{M})\mathbf{N} \cdot \mathbf{L}$ 

# Diffuse lighting



# The regressive product

- Grassmann realized there is another product symmetric to the wedge product
- Not well-known at all
  - Most books on geometric algebra leave it out completely
- Very important product, though!

## The regressive product

- Operates on antivectors in a manner symmetric to how the wedge product operates on vectors
- Uses an upside-down wedge:

$$\overline{\mathbf{e}}_1 \vee \overline{\mathbf{e}}_2$$

• We call it the "antiwedge" product

## The antiwedge product

- Has same properties as wedge product, but for antivectors
- Operates in complementary space on dual basis or "antibasis"

# The antiwedge product

- Whereas the wedge product increases grade, the antiwedge product decreases it
- Suppose, in *n*-dimensional Grassmann algebra, **A** has grade *r* and **B** has grade *s*
- Then  $\mathbf{A} \wedge \mathbf{B}$  has grade r + s
- $\bullet$  And  $A \lor B$  has grade

$$n - (n - r) - (n - s) = r + s - n$$

## Antiwedge product in 3D

$$\overline{\mathbf{e}}_1 \lor \overline{\mathbf{e}}_2 = (\mathbf{e}_2 \land \mathbf{e}_3) \lor (\mathbf{e}_3 \land \mathbf{e}_1) = \mathbf{e}_3$$
$$\overline{\mathbf{e}}_2 \lor \overline{\mathbf{e}}_3 = (\mathbf{e}_3 \land \mathbf{e}_1) \lor (\mathbf{e}_1 \land \mathbf{e}_2) = \mathbf{e}_1$$
$$\overline{\mathbf{e}}_3 \lor \overline{\mathbf{e}}_1 = (\mathbf{e}_1 \land \mathbf{e}_2) \lor (\mathbf{e}_2 \land \mathbf{e}_3) = \mathbf{e}_2$$

## Similar shorthand notation

 $\overline{\mathbf{e}}_{12} = \overline{\mathbf{e}}_1 \lor \overline{\mathbf{e}}_2$  $\overline{\mathbf{e}}_{23} = \overline{\mathbf{e}}_2 \lor \overline{\mathbf{e}}_3$  $\overline{\mathbf{e}}_{31} = \overline{\mathbf{e}}_3 \lor \overline{\mathbf{e}}_1$  $\overline{\mathbf{e}}_{123} = \overline{\mathbf{e}}_1 \lor \overline{\mathbf{e}}_2 \lor \overline{\mathbf{e}}_3$ 

## Join and meet

- Wedge product joins *vectors* together
  - Analogous to union
- Antiwedge product joins *antivectors* 
  - Antivectors represent absence of geometry
  - Joining antivectors is like removing vectors
  - Analogous to intersection
  - Called a meet operation

## Homogeneous coordinates

• Points have a 4D representation:

$$\mathbf{P} = (x, y, z, w)$$

- Conveniently allows affine transformation through 4 x 4 matrix
- Used throughout 3D graphics

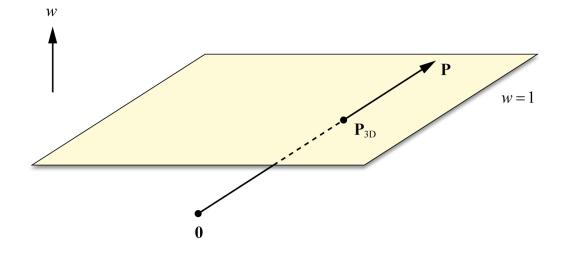
## Homogeneous points

To project onto 3D space, find where 4D vector intersects subspace where w = 1

$$\mathbf{P} = (x, y, z, w)$$

$$\mathbf{P}_{3\mathrm{D}} = \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)$$

#### Homogeneous points



## Homogeneous model

- With Grassmann algebra, homogeneous model can be extended to include 3D points, lines, and planes
- Wedge and antiwedge products naturally perform union and intersection operations among all of these

# 4D Grassmann algebra

- Scalar unit
- Four vectors:  $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$
- Six bivectors:  $e_{12}, e_{23}, e_{31}, e_{41}, e_{42}, e_{43}$
- Four antivectors:  $\overline{\mathbf{e}}_1, \overline{\mathbf{e}}_2, \overline{\mathbf{e}}_3, \overline{\mathbf{e}}_4$
- Antiscalar unit (quadvector)

### Homogeneous lines

• Take wedge product of two 4D points

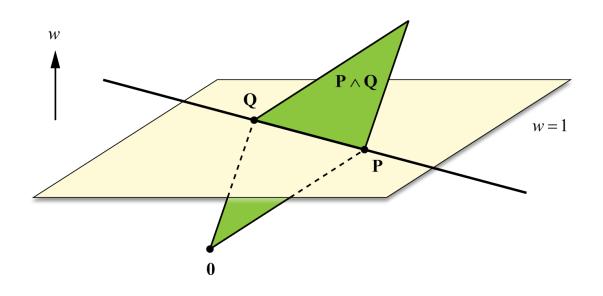
$$\mathbf{P} = (P_x, P_y, P_z, 1) = P_x \mathbf{e}_1 + P_y \mathbf{e}_2 + P_z \mathbf{e}_3 + \mathbf{e}_4$$

 $\mathbf{Q} = (Q_x, Q_y, Q_z, 1) = Q_x \mathbf{e}_1 + Q_y \mathbf{e}_2 + Q_z \mathbf{e}_3 + \mathbf{e}_4$ 

#### Homogeneous Lines

$$\mathbf{P} \wedge \mathbf{Q} = (Q_x - P_x)\mathbf{e}_{41} + (Q_y - P_y)\mathbf{e}_{42} + (Q_z - P_z)\mathbf{e}_{43} + (P_yQ_z - P_zQ_y)\mathbf{e}_{23} + (P_zQ_x - P_xQ_z)\mathbf{e}_{31} + (P_xQ_y - P_yQ_x)\mathbf{e}_{12}$$

- This bivector spans a 2D plane in 4D
- In subspace where w = 1, this is a 3D line



- The 4D bivector can be decomposed into two 3D components:
  - A tangent vector and a moment bivector
  - These are perpendicular

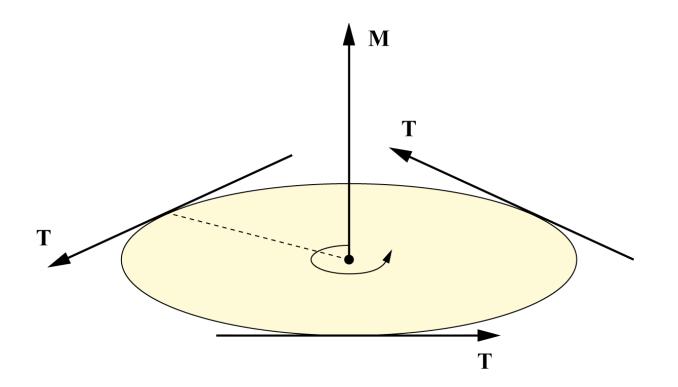
$$\mathbf{P} \wedge \mathbf{Q} = (Q_x - P_x)\mathbf{e}_{41} + (Q_y - P_y)\mathbf{e}_{42} + (Q_z - P_z)\mathbf{e}_{43} + (P_yQ_z - P_zQ_y)\mathbf{e}_{23} + (P_zQ_x - P_xQ_z)\mathbf{e}_{31} + (P_xQ_y - P_yQ_x)\mathbf{e}_{12}$$

- The 4D bivector no longer contains any information about the two points used to create it
- Contrary to parametric origin / direction representation

- Tangent T vector is  $\mathbf{Q}_{3D} \mathbf{P}_{3D}$
- Moment M bivector is  $\,P_{\rm 3D} \wedge Q_{\rm 3D}\,$

$$\mathbf{P} \wedge \mathbf{Q} = (Q_x - P_x) \mathbf{e}_{41} + (Q_y - P_y) \mathbf{e}_{42} + (Q_z - P_z) \mathbf{e}_{43} + (P_y Q_z - P_z Q_y) \mathbf{e}_{23} + (P_z Q_x - P_x Q_z) \mathbf{e}_{31} + (P_x Q_y - P_y Q_x) \mathbf{e}_{12}$$

#### Moment bivector



# Plücker coordinates

- Origin of Plücker coordinates revealed!
- They are the coefficients of a 4D bivector
- A line L in Plücker coordinates is

$$\mathbf{L} = \{\mathbf{Q} - \mathbf{P} : \mathbf{P} \times \mathbf{Q}\}$$

 A bunch of seemingly arbitrary formulas in Plücker coordinates demystified

Take wedge product of three 4D points

$$\mathbf{P} = (P_x, P_y, P_z, 1) = P_x \mathbf{e}_1 + P_y \mathbf{e}_2 + P_z \mathbf{e}_3 + \mathbf{e}_4$$

- $\mathbf{Q} = (Q_x, Q_y, Q_z, 1) = Q_x \mathbf{e}_1 + Q_y \mathbf{e}_2 + Q_z \mathbf{e}_3 + \mathbf{e}_4$
- $\mathbf{R} = (R_x, R_y, R_z, 1) = R_x \mathbf{e}_1 + R_y \mathbf{e}_2 + R_z \mathbf{e}_3 + \mathbf{e}_4$

## $\mathbf{P} \wedge \mathbf{Q} \wedge \mathbf{R} = N_x \overline{\mathbf{e}}_1 + N_y \overline{\mathbf{e}}_2 + N_z \overline{\mathbf{e}}_3 + D \overline{\mathbf{e}}_4$

- N is the 3D normal bivector
- D is the offset from origin in units of **N**

 $\mathbf{N} = \mathbf{P}_{3D} \wedge \mathbf{Q}_{3D} + \mathbf{Q}_{3D} \wedge \mathbf{R}_{3D} + \mathbf{R}_{3D} \wedge \mathbf{P}_{3D}$  $D = -\mathbf{P}_{3D} \wedge \mathbf{Q}_{3D} \wedge \mathbf{R}_{3D}$ 

#### Plane transformation

- A homogeneous plane is a 4D antivector
- It transforms by the inverse of a 4 x 4 matrix
  - Just like a 3D antivector transforms by the inverse of a 3 x 3 matrix
  - Orthogonality not common here due to translation in the matrix

# Projective geometry

| 4D Entity           | 3D Geometry     |
|---------------------|-----------------|
| Vector (1-space)    | Point (0-space) |
| Bivector (2-space)  | Line (1-space)  |
| Trivector (3-space) | Plane (2-space) |

 We always project onto the 3D subspace where w = 1

# Geometric computation in 4D

- Wedge product
  - Multiply two points to get the line containing both points
  - Multiply three points to get the plane containing all three points
  - Multiply a line and a point to get the plane containing the line and the point

# Geometric computation in 4D

- Antiwedge product
  - Multiply two planes to get the line where they intersect
  - Multiply three planes to get the point common to all three planes
  - Multiply a line and a plane to get the point where the line intersects the plane

# Geometric computation in 4D

- Wedge or antiwedge product
  - Multiply a point and a plane to get the signed minimum distance between them in units of the normal magnitude
  - Multiply two lines to get a special signed crossing value

## Product of two lines

- Wedge product gives an antiscalar (quadvector or 4D volume element)
- Antiwedge product gives a scalar
- Both have same sign and magnitude
- Grassmann treated scalars and antiscalars as the same thing

### Product of two lines

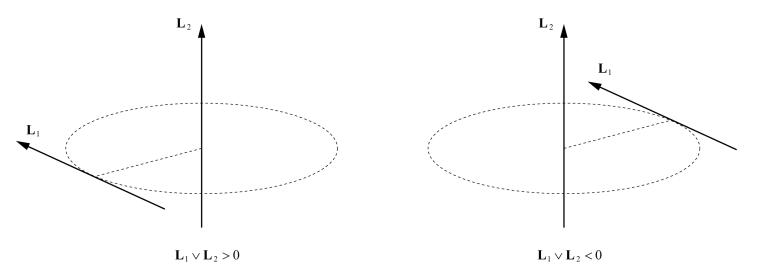
- Let  $\mathbf{L}_1$  have tangent  $\mathbf{T}_1$  and moment  $\mathbf{M}_1$
- Let  $\mathbf{L}_2$  have tangent  $\mathbf{T}_2$  and moment  $\mathbf{M}_2$
- Then,

$$\mathbf{L}_1 \wedge \mathbf{L}_2 = -(\mathbf{T}_1 \wedge \mathbf{M}_2 + \mathbf{T}_2 \wedge \mathbf{M}_1)$$
$$\mathbf{L}_1 \vee \mathbf{L}_2 = -(\mathbf{T}_1 \vee \mathbf{M}_2 + \mathbf{T}_2 \vee \mathbf{M}_1)$$

# Product of two lines

- The product of two lines gives a "crossing" relation
  - Positive value means clockwise crossing
  - Negative value means counterclockwise
  - Zero if lines intersect

# Crossing relation



# Distance between lines

 Product of two lines also relates to signed minimum distance between them

$$d = \frac{\mathbf{L}_1 \wedge \mathbf{L}_2}{\|\mathbf{T}_1 \wedge \mathbf{T}_2\|}$$

 (Here, numerator is 4D wedge product, and denominator is 3D wedge product)

## Ray-triangle intersection

- Application of line-line product
- Classic barycentric calculation difficult due to floating-point round-off error
  - Along edge between two triangles, ray can miss both or hit both
  - Typical solution involves use of ugly epsilons

# Ray-triangle intersection

- Calculate 4D bivectors for triangle edges and ray
  - Take wedge products between ray and three edges
  - Same sign for all three edges is a hit
  - Impossible to hit or miss both triangles sharing edge unless exact intersection
  - Need to handle zero in consistent way

# Weighting

 Points, lines, and planes have "weights" in homogeneous coordinates

| Entity | Weight                     |
|--------|----------------------------|
| Point  | w coordinate               |
| Line   | Tangent component <b>T</b> |
| Plane  | x, y, z component          |

# Weighting

- Mathematically, the weight components can be found by taking the antiwedge product with the antivector (0,0,0,1)
- We would never really do that, though, because we can just look at the right coefficients

## Normalized lines

- Tangent component has unit length
- Magnitude of moment component is perpendicular distance to the origin

# Normalized planes

- (x,y,z) component has unit length
- Wedge product with (normalized) point is perpendicular distance to plane

# Programming considerations

- Convenient to create classes to represent entities of each grade
  - Vector4D
  - Bivector4D
  - Antivector4D

# Programming considerations

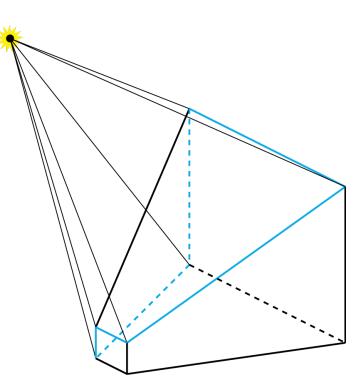
- Fortunate happenstance that C++ has an overloadable operator ^ that looks like a wedge
- But be careful with operator precedence if you overload ^ to perform wedge product
  - Has lowest operator precedence, so get used to enclosing wedge products in parentheses
- E.g., x ^ y > 0 compiles as x ^ (y > 0)

# Combining wedge and antiwedge

- The same operator can be used for wedge product and antiwedge product
- Either they both produce the same scalar and antiscalar magnitudes with the same sign
- Or one of the products is identically zero
- For example, you would always want the antiwedge product for two planes because the wedge product is zero for all inputs

# Example application

- Calculation of shadow region planes from light position and frustum edges
- Simply a wedge product between edge line and light position L



# Summary

| Old school                               | New school                                    |
|------------------------------------------|-----------------------------------------------|
| Cross product $\rightarrow$ axial vector | Wedge product $\rightarrow$ bivector          |
| Dot product                              | Antiwedge vector / antivector                 |
| Scalar triple product                    | Triple wedge product                          |
| Plücker coordinates                      | 4D bivectors                                  |
| Operations in Plücker coordinates        | 4D wedge / antiwedge products                 |
| Transform normals with inverse transpose | Transform antivectors with adjugate transpose |

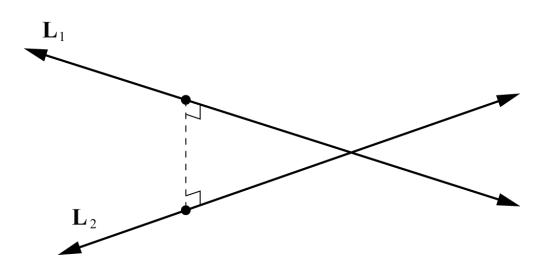
WSCG 2012

June 27, 2012 Plzeň, Czech Republic

# Supplemental Slides

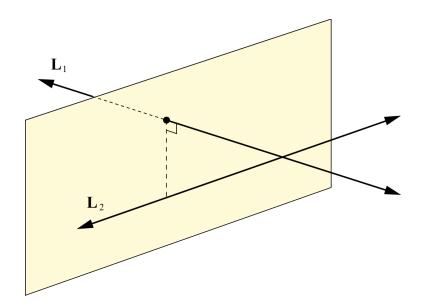
# Points of closest approach

 Wedge product of line tangents gives complement of direction between closest points



# Points of closest approach

 Plane containing this direction and first line also contains closest point on second line



# Two dimensions

- 1 scalar unit
- 2 basis vectors
- 1 bivector / antiscalar unit
- No cross product
- All rotations occur in plane of 1 bivector

# One dimension

- 1 scalar unit
- 1 single-component basis vector
  - Also the antiscalar unit
- Equivalent to "dual numbers"
- All numbers have form a + be
  - Where  $e^2 = 0$

#### Matrix inverses

 The *i*-th row of the inverse of **M** is 1/(det **M**) times the wedge product of all columns of **M** except column *i*.

 Define points P, Q and planes E, F, and line L

$$\mathbf{P} = (P_x, P_y, P_z, 1) = P_x \mathbf{e}_1 + P_y \mathbf{e}_2 + P_z \mathbf{e}_3 + \mathbf{e}_4$$
  

$$\mathbf{Q} = (Q_x, Q_y, Q_z, 1) = Q_x \mathbf{e}_1 + Q_y \mathbf{e}_2 + Q_z \mathbf{e}_3 + \mathbf{e}_4$$
  

$$\mathbf{E} = (E_x, E_y, E_z, E_w) = E_x \overline{\mathbf{e}}_1 + E_y \overline{\mathbf{e}}_2 + E_z \overline{\mathbf{e}}_3 + E_w \overline{\mathbf{e}}_4$$
  

$$\mathbf{F} = (F_x, F_y, F_z, F_w) = F_x \overline{\mathbf{e}}_1 + F_y \overline{\mathbf{e}}_2 + F_z \overline{\mathbf{e}}_3 + F_w \overline{\mathbf{e}}_4$$
  

$$\mathbf{L} = T_x \mathbf{e}_{41} + T_y \mathbf{e}_{42} + T_z \mathbf{e}_{43} + M_x \mathbf{e}_{23} + M_y \mathbf{e}_{31} + M_z \mathbf{e}_{12}$$

Product of two points

$$\mathbf{P} \wedge \mathbf{Q} = (Q_x - P_x)\mathbf{e}_{41} + (Q_y - P_y)\mathbf{e}_{42} + (Q_z - P_z)\mathbf{e}_{43} + (P_yQ_z - P_zQ_y)\mathbf{e}_{23} + (P_zQ_x - P_xQ_z)\mathbf{e}_{31} + (P_xQ_y - P_yQ_x)\mathbf{e}_{12}$$

Product of two planes

$$\mathbf{E} \vee \mathbf{F} = (E_z F_y - E_y F_z) \mathbf{e}_{41} + (E_x F_z - E_z F_x) \mathbf{e}_{42} + (E_y F_x - E_x F_y) \mathbf{e}_{43} + (E_x F_w - E_w F_x) \mathbf{e}_{23} + (E_y F_w - E_w F_y) \mathbf{e}_{31} + (E_z F_w - E_w F_z) \mathbf{e}_{12}$$

Product of line and point

$$\mathbf{L} \wedge \mathbf{P} = (T_y P_z - T_z P_y + M_x) \overline{\mathbf{e}}_1 + (T_z P_x - T_x P_z + M_y) \overline{\mathbf{e}}_2 + (T_x P_y - T_y P_x + M_z) \overline{\mathbf{e}}_3 + (-P_x M_x - P_y M_y - P_z M_z) \overline{\mathbf{e}}_4$$

Product of line and plane

$$\mathbf{L} \vee \mathbf{E} = (M_z E_y - M_y E_z - T_x E_w) \mathbf{e}_1 + (M_x E_z - M_z E_x - T_y E_w) \mathbf{e}_2 + (M_y E_x - M_x E_y - T_z E_w) \mathbf{e}_3 + (E_x T_x + E_y T_y + E_z T_z) \mathbf{e}_4$$